tdm.model.LogisticRegressionModel#
- class tdm.model.LogisticRegressionModel(dataset: Dataset, regularization_alpha: float | Literal['score'] = 0, score_kwargs: dict | None = None, cv_kwargs: dict | None = None, maxiter: int = 100, **kwargs)[source]#
A
Model
that models probabilities using logistic regression.- __init__(dataset: Dataset, regularization_alpha: float | Literal['score'] = 0, score_kwargs: dict | None = None, cv_kwargs: dict | None = None, maxiter: int = 100, **kwargs) None [source]#
Initialize and fit the model
- Parameters:
dataset (Dataset) – _description_
regularization_alpha (float | Literal["score", "significance"], optional) – _description_. Defaults to 0.
score_kwargs (dict | None, optional) – passed to self._fit_score_optimized_model(…)
maxiter (int, optional) – _description_. Defaults to 100.
Note
See
Model
base class for all available model kwargs.
- fit(features: DataFrame, obs: Series, cell_type: str, regularization_alpha: float | Literal['score', 'cv'] | dict[str, float] = 0, score_kwargs: dict | None = None, cv_kwargs: dict | None = None, **kwargs) BinaryResultsWrapper | L1BinaryResultsWrapper [source]#
Fits a single model to X=features, y=obs
Note: By default, Logit doesn’t fit an intercept term.
- get_parameter(cell_type: str, parameter_name: str, obs: Literal['division'] = 'division') None [source]#
Gets the value of a parameter in the model.
- parameter_names(cell_type: str, obs: Literal['death', 'division']) ndarray [source]#
Returns the parameter names associated with the death / division model for cells of type cell_type.
- parameter_pvalues(cell_type: str, obs: Literal['death', 'division']) ndarray [source]#
Returns the parameters associated with the death / division model for cells of type cell_type.
- parameter_stds(cell_type: str, obs: Literal['death', 'division']) ndarray [source]#
Returns the parameters associated with the death / division model for cells of type cell_type.
- parameters(cell_type: str, obs: Literal['death', 'division']) ndarray [source]#
Returns the parameters associated with the death / division model for cells of type cell_type.